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Abstract

In this paper we provide an improved concentration of measure theorem for the hypergeometric
distribution.
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Concentration of the hypergeometric distribution K (ni,n, m), counting the number of de-
fectives obtained when n; items are selected randomly without replacement from n of which
m are defective, is important in learning theory. For example Vapnik’s proof of Theorem 4.1
in (Vapnik, 1998), controlling the difference between generalization error and training error
uniformly over some hypothesis class, utilizes the concentration of the hypergeometric distri-
bution K (n1,2n1, m). His proof can easily be modified to utilize the concentration of the more
general K (nq,n,m). In addition, Cannon (Cannon, Ettinger, Hush, & Scovel, 2002a) use the
concentration of K (ni,n, m) to obtain bounds on estimation error in a learning problem where
the freedom to specify n might be useful. Serfling (Serfling, 1974) provides bounds on the
concentration of the hypergeometric distribution. However, extending Vapnik’s proof on page
163 in (Vapnik, 1998) of the concentration of K (n1,n,m) for n = 2n; to general n provides a
substantial improvement over Serfling’s result. This improvement is similar to that obtainable
for binomial sampling when the binomial probability p is small, (e.g. see (McDiarmid, 1998)).
In this paper we state and prove this new concentration theorem and compare with Serfling’s
result.

We now state and prove our main theorem.

Theorem 0.1. Let K = K(ni,n,m) denote the hypergeometric random variable describing
the process of counting how many defectives are selected when ny items are randomly selected
without replacement from a population of n items of which m are defective. Let v > 2.

Then
P(K — B(K) > ) < ¢ 20mmm(2* 1)
and

P(K — B(K) < —y) < ¢ 20mmn(’~1)

— 1 1 1 1
where oy nm = max ((n1+1 + nfn1+1)’ (m+1 T ”m+1)>'

Before we proceed with the proof, let us compare the first bound with Serfling’s result
(Serfling, 1974)

P(K ~ B(K) > ) < e mo s (1)

Comparison with the second bound is the same. We compare the rate coefficients oy =
m from the Serfling’s bound with oy, nm. If we denote & = ml+1 + n77”}1+1 then

it 1s clear that oy, 5, > &. It is not hard to show that for all n > 1, ny > 1 and n; < n we
have

S 7
— < &< 2«
2 S

so that the exponential rate of Theorem 0.1 is no worse than half that Serfling’s bound (1). It

is clear that for large n; and n these coefficents are very close. In addition, when 2n; > n, we

obtain & > a;s. On the other hand when m < min (nq,n — n1) or m > max (n1,n — nq)
1 n 1

m+1 n—m+1

(2)

Oninm =
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which can be O(n;) times as large as resulting in a much stronger concentration.

. n
ni(n—ni1+1)
For example when m = 0 and n = 2n1, ay, nm =

_ n
large as g = m

mL_H + n—i—l%m is greater than %' times as
We now proceed with the proof of the Theorem.

Proof. Let C™ = (') and let ng = n —ny. We follow the proof in Vapnik (Vapnik, 1998), page
163, which is valid when ny = ns. The hypergeometric distribution has the probability

ChCnlm
p(k) W

for max (0, m — n2) <k < min (ny,m). Let S = max (0,m — n2) and T' = min (ny, m).
Consider
plk+1) m—k ny —k

a(k) = p(k) T h+1l natk+l-m

It is clear that ¢ monotonically decreases as k increases. Define d(k) = ZZT:,C p(7). Then

T - T-1
d(k+1):Z sz+1:Zq
i=k+1 = i=k

which is less than

T—-1 T
k) Y p(i) < q(k) Y p(i) = q(k)d(k)
i=k i=k
by the monotonicity of q. Therefore,
d(k+1) < q(k)d(E).

Consequently, for any S <j <k <T -1,
k—1
d(j) [«
i=j
and since d(j) < 1, we obtain
k—1
k) < 1 e6)
i=j

m(ni1+1)—(n2+1)

Consider k£ a continuous variable for the moment. x = T

such that ¢(x) = 1. Consider the function Q(t) = g(k + t). Then

mQ(0) =

is the unique point

and

1 1 1 1

d
—(1 t) = — — _ _
geW) = - —— — m—k—1 natrtttl-m

2
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Since

1 1 4
> =
4

TQ—T

when a > 0 and a > 7 > 0, if we consider pairing the first with the fourth term and the second
with the third term, we get the bound

d 1 1
E(IHQ(t)) s _4(n1 +1 + n9 + 1).

Likewise, we can pair the first with the second and the third with the fourth to obtain the
bound

d 1 1
Z(mQ() < —4(m+ B 1).

Consequently %(ln Q(t)) < —4ay, nm- Dropping subscripts and writing & = ay, n,m we have

d
E(ln Q(t)) < —4a.
Integration from s up to t where ¢t > sand S <k +s<T and S <k +1t < T yields
InQ(t) —InQ(s) < —4a(t — s). (3)

In particular In Q(¢) < —4at for t > 0 and so
k—1 k-1 k—1
Ind(k) <> Ing(i)=> MQ>i—k) < —4a» (i — k)
i=j i=j i=j

when k < j < k — 1, but since we can bound the sum like so
k—1 k 1 1
S i ) 2/ ik 1)di= 2(h— k=12 = S(j— k= 1)?
— i=j 2 2
i=j
we have the bound

nd(k) < —4a(%(k k1) %(j —r-1p?).

Now choose j = [k] the smallest integer greater than or equal to k. Then (j — k — 1)2 =
([k] — K —1)? <1 so that we have

d(k) < —20((k = x = 1)* = 1).

Denote E = F(K) = ™. The constraint ¥ > j + 1 is guaranteed when k > £ +2 since £ > &
implies that £ 4+ 1 > [k]. Let

AcE ke 1+ny  m(ni —mn2)
24+n n(2+n)
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and note that we have the bounds

1 < min (ng,n9) + 1 <A< max (nq,ng) + 1
24+n "~ 24+n -~ 24n

Substitute kK = E — A to obtain

< 1.

nd(k) < —2a((k —E+A-1)?2- 1)
but since A < 1 we obtain

nd(k) < —2a((k —E)? - 1).
Consequently, we have proven that

P(K — B(K) > v) < e~2e0"1),

To get the other side of the bound we proceed in a similar fashion. Now instead define
d(k) = 32{_sp(i). Then

k—1 k k 1
dh-1)=3p) = 3 pli-1)= 3 —pi)
i=S i=S+1 imSt1 q(i—1)
which is less than
1 k k
TP IR ; )

by the monotonicity of q. Therefore,

_ 1
q(k —1)

Consequently, for any S <k <j<T -1,

ki
1
1O

=k

d(k —1) < d(k).

~.

and since d(j) < 1, we obtain

Now we set ¢t = 0 in inequality 3 to obtain
—InQ(s) < —4a(0 — s)
for s < 0. Consequently,

—1Ingq(i) < —4a(k — 1)
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for 7 < k. Then we obtain

Ind(k) < = Ing(i) < —4a (ki)

for § <k < j <k, but since we can bound the sum
J i+l 1 1
Y=< [ i 51w - w2
i=k i=k 2 2

we have the bound
]. 2 ]. . 2
nd(k) < —4a(§(k —r)? =5 +1-nr) )
We now choose j = |x], but since (|x] + 1 — )2 < 1 we obtain
nd(k) < —2a((k k) 1).

The constraint k < j is satisfied when k < F — 2 since k > E — 1 implies that | x| — 2. Since
A > 0 it follows that k¥ — E < k — xk and we can write

nd(k) < —2a((k —E)? - 1).
Therefore we have shown that
P(K — B(K) < —7) < e 22071)

and the proof is finished.
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